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ONE NEAR-TERM RESPONSE to current constraints of
fuel cost, emissions standards, and acceptable
performance is near-lean-limit operation of con-
ventional engines. However, the reduced pressure
and temperature achieved in homogeneous-charge
four-stroke spark-ignition engines under such
fuel-lean operation may lead to enhanced emission
of partially oxidated, or pyrolyzed but unburned,
hydrocarbons known to be toxic and/or carcino-
genic [1].* Proper design of the number, loca-
tion, timing, and energy of spark-ignition
sources should preclude bulk-gas flame-out as a
source of such emissions. However, the quench
layers formed on cold cylinder surfaces ?head
wall, side wall, and piston crown) [2] are
thickened under off-stoichiometric operation [3];
uniess the cold unburned-hydrocarbon content of
these quench layers can be oxidated by mixing
with hot oxygen-rich bulk-gas products before
being exhausted, the lean-operation strategy may
be flawed. What seems required are experimental
and theoretical investigations of the formation
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and fate of unburned hydrocarbons in reciprocating-
piston-type internal combustion engines [4], to
furnish as much engineering information as pos-
sible for the new designer who faces decisions
concerning the relative merits of alternative
engine modifications. This paper is one in a
series in which the authors seek to contribute
to this need.

The scope of the pertinent investigation
should be broadened in view of recent interest
in low-heat-transfer zircomium-oxide-sprayed
engine components, and in adiabatic components
of glass ceramics (such as silicon nitride and
silicon carbide), particularly for larger
engines [5,6]. If durable materials can be
developed, not only are problems associated with
the size and weight and reliability and mainte-
nance of the cooling system reduced or even
eliminated, but also currently wasted heat can

*Numbers in brackets designate references
given at the end of the paper.

The unsteady one-dimensional interaction
of a planar flame, propagating through a fuel-
lean premixture, with a parallel impervious
noncatalytic wall is modeled as a Stefan-type
problem incorporating one-step chemistry.
Quantitative details concerning retardation of
flame speed near an isothermal wall (pertinent
to current cooled engines), and concerning

acceleration of flame speed near an adiabatic
wall (pertinent to proposed engines), are
obtained. The time history of unburned hydro-
carbon content varies with dimensionless
Arrhenius activation energy, the order of the
reaction chemistry, and the Lewis-Semenov
number. Both temporally varying pressure, and
also nonuniform fuel stratification, are
discussed.
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be utilized via engine compounding (if the
exhaust port of the primary engine can survive
hotter operating conditions).

Thus, interest centers on interaction of

through confined fuel-lean
premixtures with (1) isothermal (cold) walls,
and (2) adiabatic walls. Burning is anticipated
to be retarded near cold walls and accelerated
near adiabatic walls, but quantitative insight
relating results to controllable parameters is
extremely limited in the existing literature.

flames propagatin?

It seems premature to undertake the turbu-
lent case when results for the laminar case are
not yet available. Further, formulation for
turbulent reacting flow in an automotive context
is today highly conjectural [7], and turbulent
fluctuations may be significantly reduced in the
near-wall phenomena of interest. In any case,
interest here is centered on laminar flow,
though unsteady and nonisobaric conditions are
ultimately to be included.

Though intermediate orientations can and do
arise in practice, it is convenient to confine
attention to two arrangements [8,9]: one in
which the bulk-gas isotherms are parallel to the
containing wall (henceforth termed the end-wall
geometry) [10-14], and one in which the bulk-gas
isotherms are perpendicular to the containing
wall (henceforth termed the side-wall geometry)
[15,16]. Elsewhere the authors intend to present
both theoretical and experimental results for the
side-wall geometry. It appears appropriate to
confine the present discussions to theoretical
results for the end-wall geometry only.

In general, attention is confined to un-
steady one-dimensional flow in which a well-
developed flame initially is propagating through
a fuel-lean premixture; both the nonconfined
(isobaric) and confined (nonisobaric) cases are
of interest. How the properties of the flame
become modified as a wall is approached is the
central issue. Nevertheless, as a prerequisite,
some properties of flame propagation away from
walls must be established to serve as the start-
ing (and reference) conditions. The dynamics
is not central, once it is noted that the pres-
sure is spatially invariant, though not in
general temporally invariant, for the highly
subsonic phenomena of interest. What is central,
in addition to overall conservation of mass, is
conservation of species and of heat; this
conservation consists of a balance of convection,
diffusion, and chemical reaction.

A conventional set of self-consistent
approximations, often alluded to (in toto) as the
Shvab-Zeldovich formulation [17], is adopted;
this formulation has been of great engineering
value in the analysis of a wide variety of aero-
thermochemical phenomena. A mixture of ideal
gases of comparable molecular weight is taken to
be present, such that a universal binary diffu-
sion coefficient suffices, and one (constant,
order-unity) Lewis-Semenov number may be intro-

duced to characterize the ratio of thermal
diffusivity to mass-transfer coefficients.

The thermal diffusivity is taken to be inversely
proportional to the square of the density. A
universal constant heat capacity suffices, and
thermodiffusion, barodiffusion, radiative trans-
fer, and mechanical dissipation of energy are
negligible. Most notably, a direct one-step
irreversible exothermic mechanism describes the
chemical-reaction mechanism, with an Arrhenius
form appropriate for the specific rate constant
occurring in the law of mass action [3]. The
fact is that the detailed rates and multistep
mechanisms of the actual higher-hydrocarbon/air
chemical reaction, particularly with hetero-
geneous complications posed by the presence of a
wall [18], are not known; once this chemical-
kinetic compromise is accepted as currently
necessary, the other simplifications follow from
the considerations of a consistent level of
approximation.

Accordingly, aside from the role of chemical
reaction, which introduces the complexity of
transcendental nonlinearity into the pertinent
initial/boundary-value problems, treatment of
parabolic Tinear constant-coefficient equations
only, familiar from the field of heat conduction,
is required. However, for Arrhenius activation
temperature large relative to burned-gas tempera-

ture, the role of chemical reaction is limited to |

a spatial domain small relative to the domain in
which a chemically frozen balance of convection
and diffusion is an adequate description [19-21].
Here, this small spatial domain is reduced to a
mathematical interface [22], which is a Dirac-
delta-function-type sink for reactants, and
source for products and chemical heat release.
The interface is then a premixed thin flame,
analogous to the Burke-Schumann diffusion flame
[23] long employed in aerothermochemical flows
involving unpremixed reactants; however, the
flame without structure in the premixed case, in
eneral, retains chemical-kinetic parameters
%such as the Arrhenius activation energy), while
the thin diffusion flame retains no chemical-
kinetic parameters. Only in the special case of
an adiabatic flow at Lewis-Semenov number unity
is the premixed flame without structure indepen-
dent of chemical-kinetic parameters [13].
Nevertheless, adoption of a thin flame (at which
temperature and mass fractions are continuous,
but their derivatives are discontinuous) is a
significant simplification, even for the premixed
reacting flow, because an overall solution is
obtained simply by appropriately joining local
solutions to heat-conduction-type problems at
interfoces (flames). In that the position, as
well as the temperature, of the flames must be
found in the course of solution, thin-flame
modeling reduces intractable aerothermochemical
problems to tractable Stefan problems [24,25].
Not only are the conventional analytic proce-
dures for treating Stefan problems available,
but the authors have introduced novel techniques
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for the aerothermochemnical applications of rele-
vance here. Such modeling may prove useful

in a wider range of premixed reacting flows than
the particular flame/wall interactions of in-
terest here.

FORMULATION

Consider the unsteady, one-dimensional,
low-Mach-number flow of a reacting premixture,
where the chemical reaction is a direct, one-
step, irreversible one between oxidant C and
fuel F that generates gaseous product P, namely:

"OO‘VFF"'PP' (1)

where v; is the stoichiometric coefficient of

species i, i = 0, F, P. In the Shvab-Zeldovich

{ approximation, the appropriate dimensional
equations of conservation of mass, conservation
of species, conservation of energy, and of
state, for such a flow, are:

S I nd i
3V‘ aV1 3 aYi
— | - = .
T\t ) A °”sﬁ)'“' Yy S

» ok * «y dp* .
o (v_ ‘e a*_) " R ((wc;) g—) (@/eghe + (Ve) B+ (4)

p* = o* R* T*, (5)

Here, t* and x* are the time and Cartesian
spatial coordinates, respectively; u* is the

gas speed and y* is the streamfunction; p* and
T* are the density and temperature; R* is the
gas constant for the mixture, taken to be com-
posed of species of comparable molecular weight;
p* is the pressure, taken to be a function of
time only, from consideration of the equation of

conservation of momentum; Yi is the stoichio-
metrically-adjusted mass fraction of species i;
D* and A* are the mass-transfer and thermal-
conductivity coefficients, respectively, and c*
is the (constant universal) heat capacity at
constant pressure; and Q* is the specific heat
of combustion; while w* is the reaction rate.

, In what follows, it is taken that the Lewis-

*  Semenov number is a constant of order unity,

g §.8.,

'/ *
Le-%;b;g) = const. ~ 0(1). (6)

Further it is compatible with the accuracy
characteristic of the Shvab-Zeldovich approxi-
mation to adopt

2 0" = const. (7)

In this presentation, the law of mass action,
under an Arrhenius specific rate constant,
modified to overcome the so-called cold-boundary
difficulty, is

. 3 N s P NP TS M PR

vO*V; VFVF VOVO exp { —0%/(T* - Ta): ; (8)

e

we = B'e T% e

where B'* is the (constant) frequency factor;
o* is the (constant) Arrhenius activation
temperature; T; is the cold-boundary (i.e., cold-

premixture) temperature; and o characterizes the
pre-exponential thermal dependence of the .
reaction rate. While, in general, there need be
no association of this dependence and order of
reaction, for convenience (and within the accu-
racy of previously adopted approximations), here
it is taken that

at(v("vf)-\. (9)

It is also convenient to introduce the
von Mises transformation (x*,t*) =+ (y*,t*),
where the streamfunction y* is defined in Eq. 2.
Under this transformation, the species and
energy conservation equations, 3 and 4, become

avi

2
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36 - (o+%0) - e kel

Yo
F vo exp%-o‘/(T‘

|
- 00 .
“V'ao
2
e COMERE o  RR TR e
5% - D)Lea—w:; /ep) &= P

wF)-1

o t@ereg) wretoemn O (0 e {-e~/(r- . T;): (11)

while the (complementary) mass conservation and
mapping equations are given by

u* 3 1 - 1
Eri ﬁf(?) oW

(12a,b)

To develop a nondimensional formulation, let

By vy
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Here, the subscript u denotes unburned (or cold-
premixture) conditions; while, the subscript b
denotes burned conditions (in the absence of
heat losses, i.e., under adiabatic conditions).
More specifically, u; is the so-called adiabatic

flame speed. Also, ¢ = (YFu/YOu) is the (so-

called) equivalence ratio, which is less than
unity for cases of interest here. In this
development, it is taken that YFb = 0, such that

Yoo = (Yo - Ye,) = (1 - ©)/¢]¥g,» and that
L ol Y (Q*/c;)Yru]. Further, pk = oF R* TA.

Thus, the nondimensional species and energy equa-
tions can be written as

a3

!.-;;--/q,(v("v')-,'v'(|o"-§nV)otlD{'5ufD:- (17)
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where
» n--:;},ﬂfﬁ%ﬁ& ‘,.(%).(G%QQFQ. (19)
8 = n:—g:T:y ; (20)
AT @

The nondimensional state, continuity, and mapping
equations can be written as

corb Beh(d)- k(G B0 (2)

Typically, the nondimensional activation
temperature, 8, is much greater than unity [3]:
this observation is central to the analysis to
follow. The quantity A plays the role of an
eigenvalue in steady flame propagation; again,
it is steady adiabatic flame propagation into a
quiescent premixture characterized by p;. T;.
YFu' and ¢ that yields u;, taken as known for
species 0, F reacting to form product P. For

steady adiabatic laminar flame propagation for
large B, it is known [19-21] that (1) the flow
field may be divided into a chemically frozen

preheat domain, of scale (D;/u;). in which con-

vective diffusion occurs, and a relatively
thinner reactive domain, of scale B'l(D;/u;). in

which chemical reaction and diffusion balance;
(2) that (except for very-near-stoichiometric
conditions, i.e., ¢ + 1),

nrf;v.l

in the reaction zone, the only region in which

chemical processes play a significant role (so

Y0 = Y0 for all y,t from Eq. 14); and (3) that
u

(23)

{if r(z) denotes the (complete) gamma function of
z [26])

vt ve + 17! pY
AR [2r(vg + 1) Le ) Dheos™'))

(24)
for the fuel-lean case. Accordingly, for more
complicated phenomena involving combustion in
fuel-lean premixtures characterized by large g,
it appears convenient and appropriate to reduce
the narrow reaction zone to a mathematical inter-
face at y = ¥(t), with ¥(t), the interface
lTocation, a quantity to be found in the course of
solution. For continuity of the dependent varia-
bles themselves, it is required that

(25)

Y0, T+ He=Ht)asy«v(t), fore 20,

with H(t), the temperature at the flame, another
quantity to be found in the course of solution.
The flame is anticipated to be a Dirac-delta-
function-type source [26] for chemical heat and
sink for reactants, such that first (and higher)
spatial derivatives of the dependent variables
{aside from the pressure) are discontinuous.
Hence, in the vicinity of ¥(t), the equations for
conservation of fuel and energy are well
approximated by

2

(26)

3

-

(v * ) = 1 v i
a0ty o "p{_ & 171}

2
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Hence, in the vicinity of y(t),

2 B - - X
i}l'&LeT)-o—ou{M*R: & 'M“Q:- '}-——L—L)J-Ja"a: \ .(28)

if the convention is henceforth adopted that

V!y > W!EE;E = 0. It suffices for the calcula-
tion of the dependence of the Jump in YW on B and
H(t) (using Eq. 26) to take
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Tloat) = H(t) = (1/Le) Y(g,t) & +on (29)
The discrepancy is of the order of 1/8 and would
be eliminated formally in a derivation using

singular perturbation theory. Accordingly, for

€ << .

vit)e vit)ee

2, - (Vg ® ve) = 0 v,
i‘.‘g“'hv° d / "up:-a"f“:%.!o.
" (t)e¢

+130)

¥(t)-e
or, from Eq. 29.
2 vyt vg) =) 2
"'I!;"!h!l} - ’( 0 * V) ‘jl‘ r .w{,a L“_.“lll'lm%“. (31)

‘ - H - (Y/Le)

where the upper limit has been extended to infi-
nity by use of Laplace-integral-type (i.e.,
steepest-descent) concepts [26]. Expansion of
the argument of the exponential gives

(32)

ﬂuqyﬁl;¢0%'WFONHWH'w{§%?:. (33)

by Eq. 24.

These results may be anticipated to hold
for vigorous burning only, such that a narrow
reaction zone may be adequately approximated by
equivalent interfacial conditions. Nevertheless,
the results should be of qualitative use for
less vigorous burning, in which the reaction
zone is diffuse. The interfacial results pre-
sented here by heuristic arugment may be obtained
more formally by application of multiple-scaling
techniques of modern asymptotic analysis;
actually, Zeldovich and Spalding intuitivel
used equivalent methodology decades ago [17‘.

The resulting Stefan-type problem [24,25]
may be summarized as follows for the domain
t>0, 9y <y <yp Forw(t) <y« v 1.e.,

downstream of the flame, the species and energy
equations are (Fig. 1)

Yo, (34)
Boedjexilgeeg, (35)

while for Y < ¥ < ¥(t), i.e., upstream of the
flane, the species and energy equations are

Wl g
R
o lyentlgmy (37)

flame: Y=0, T=H(t)

aT
T‘OOI’E;’O

unburned Uf(t burned
premixture '« {ue(t) gas

1>Y~0,H>T>0 Y=0

§ A e
0 wgt) v k
5 o=l o 5

Fig. 1 - Schematic for a thin-flame, Stefan-type
model of the unsteady one-dimensional isobaric
flow in which a large-activation-energy laminar
flame propagates toward an impervious noncata-
lytic wall, that is either isothermal (cold) or
adiabatic. The purely diffusive-convective
unburned-premixture region is characterized by
finite fuel mass fraction Y and by temperature T
below-the temporally varying thin-flame tempera-
ture H(t); the purely diffusive-convective burned-
gas region possesses no fuel. In the dimension-
less Cartesian coordinate x, the flame site is
denoted X¢(t); in the von Mises (mass-weighted)
coordinate, the corresponding variables are vy,

¥; in the Landau (flame-stabilized) coordinate,
the corresponding variables are o, 1. The gas
speed at the flame is denoted ug; the flame speed
(in laboratory coordinates) is denoted Ug

The following notation has been introduced for
convenience:

he.t)  for  § > w(t)

T(vit) =

(38)

N(v,t)  for o < w(t),

At the interface, i.e., for v » ¥(t) (t > 0),
the boundary conditions for the dependent varia-
bles are

Y -0, nH o« W) (39)
while the boundary conditions for the first
derivatives of the dependent variables are

(o) ] - (40)
with

(v ¢ vg) = Ve ¢

(%)‘,_’( 0V l)/?“' ‘..,(.,ﬂ%l). (41)




For t » 0, the initial conditions are [with
(vo - wL) >> 1, such that the flame is initially

far from the unburned-premixture boundary]

¥+ ¥o. given; H < Hy, given; p < 1. (42)
*0 for v - Yo
Y - :
(vg = ¢) (43)
0 <
1 - exp |o ——5— i R TR
( % ) :
(vy = ) (v-¥,)
0 Al 44
Wl - (l.ﬁo) up(-»t—e-%), hs - “'"o’ e-p(— —-“,(o ) ( )

where bo. o d0 are given consts. close to

unity in value, so the initial profiles are very
similar to those occurring in laminar isobaric
flame propagation. The right end-point boundary
condition is

hos1asy = yplt20) (45)

while the left end-point boundary conditions are

NaOor%~0u\‘al(t;0). (46)
Valor%}~0as:*;L(!:0). (47)

For some cases to be considered below, the boun-
dary and/or initial conditions given here are
modified, but explicitness is preferred to gene-
rality for purposes of presentation. However,
any initial conditions adopted are anticipated
to be compatible with the boundary conditions to
a high degree of accuracy. For brevity, the com-
plementary relations (Eq. 22) are not repeated
here, though it is noted that boundary conditions
on the velocity at impervious walls are enforced,
of course, in the obtaining of solutions.

One special case is deemed worthy of dis-
cussion at this point. For a semi-infinite
domain (e.g., g * ®), the flow is well approxi-

mated as isobaric in many circumstances, such
that p(t) = 1. If, in addition, the flow is
adiabacic with Lewis-Semenov number Le = 1, then,
under the provision that the following statements
are compatible with the initial and boundary
conditions of interest,

heWedforysw(t)y Y+ H=H=1for, >y (48)

In this special circumstance,

g..|—>%oluw~\'. (49)

independently of the chemical-kinetic parameter
B. Because of this significant simplification,
this special adiabatic case has been considered
separately for the particular circumstance of a
flame propagating isobarically toward an adia-
batic, noncatalytic wall [13].

In the sense that the reaction order and
Arrhenius activation temperature for a one-step
pseudomechanism for the chemistry must be empi-
rically assigned, the exponent on the pressure
factor, the exponent on the pre-exponeptial
temperature factor, and the nondimensional acti-
vation temperature in the exponential factor,
all in the expression for the mass-fraction
gradient at the flame, are available for assign-
ment [3,27].

Solution to the Stefan-problem formulation
may be sought by direct numerical integration;
this can be a challenging task to accomplish.
Thus, the procedure preferred here is to recast
the problem in a form such that the two-indepen-
dent-variable dependence is reduced to dependence
on a single independent variable, time. This
may be achieved by use of the method of weighted
residuals, or, more simply, by use of a straight-
forward integral method [28]; the result is an
initial-value problem, consisting of simulta-
neous quasilinear ordinary differential equations
in time, with appropriate starting conditions.
The adequacy of this approximate procedure
depends upon the ability to anticipate the
spatial variation of the dependent variables.

An alternative method to reduction to a one-
independent-variable problem is to introduce the
integral transform over space, with the inversion
leading to two simultaneous nonlinear Volterra
integral equations [26] for H(t), ¥(t); while
this reduction is formally exact for cases of
interest, convergence of the iterative technique
required for solution of the integral equations
must be achieved.

For completeness, it may be remarked that
the simplification of the Stefan-problem formu-
lation is based on the smallness of the reaction-
zone thickness relative to the preheat-zone
thickness, for large dimensionless Arrhenius
activation temperature. Phenomena in the burned-
gas region are taken to occur on the diffusive
scale of the preheat zone. Now, in fact, a
third spatial scale implicit in the adoption of
the range |wR - le has been introduced; in the

Cartesian coordinate, reference may be made to
the dimension of the "container" L*; if the
Peclet number Pe based on adiabatic flame speed
is large, i.e., if Pe = L*/(Dalua) >> 1, then

even the diffusive-convective preheat and post-
flame domains become narrow relative to scale L*
In this circumstance, the diffusive terms may be
dropped from the Stefan-problem formulation,
provided the effect of the flame is appropriately
accounted for in the resulting nondiffusive
problem. In such a nondiffusive formulation, the

!
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dependent variables themselves (except for the
pressure) are discontinuous across the parametri-
cally-inserted flame. Further details on this
level of approximation are deferred to later
publications; here, results for the already-
developed Stefan problem, retaining the diffusive
scale, are obtained.

PROBLEMS IN FLAME PROPAGATION

TRANSIENTS - Before problems including
flame/wall interaction are undertaken, some
unsteady flame propagation problems in the
infinite domain -» << = are examined to eluci~
date the formulation, the methods of solution,
and some properties of the phenomena under study.
Here the integral method is used to study the
effect of Lewis-Semenov number on reattainment
of steady flame propagation after a small heat
extraction from, or addition to, the flame.

The isobaric initial/boundary-value probiem
is given by Eqs. 34-44 and Eq. 22, with p = 1,
Y > s Yp s Yo 3 The boundary conditions

(Eqs. 45-47) become
helasy-w(fort20);iH=-0,Y+1asy~-={fort?0). (50)
In anticipation of an integral method of

solution, results are sought in the forms, com-
patible with Eq. 39,

hel- (1-A) exp{-(w-v)/!.e c} for ¥<y<w, t20; (51)
M= R expl-(v-4)/Le b}, (52)
Y1~ exp{-(v-y)/a} for ~w<cyS¥,t20, (53)

with ¢, b, d, as well as H and ¥, = fncs(t).
These forms are compatible with the initial
conditions (Eqs. 42-44) if c ~ s b > by,

d + dg, and H - ﬁb as t > 0. Insertion of
Eqs. 51-53 in Eqs. 40-41 yields

LT 41 m{ g \.ﬁ} £:1 (54)
At t = 0, for given values of H0 and oo these
.relations give by and dy; for H(t) = 1, c(t) is,
in general, irrelevant. If ﬁb is close to unity,
.S0 are b0 and do.

The evolution in time of the solutions
(Eqs. 51-53) requires the finding of b(t), c(t),
d(t), H(t), and y(t). Two algebraic eqquations
are obtained by the substitution of Eqs. 51-53
in integrals of Eqs. 35-37. For example, if

prime denotes ordinary derivative with respect
to time, from Eq. 36

¥

't B e O

:Z [mkp%' Qq-u;] [;‘7 gaw - ('-w)d‘%] we-tm  (55b)

d(¥' - 4') = . (55¢)

Similarly, Eq. 35 gives

w-.n.m[r:_'?.g_'].-ue_-;‘;z, (56)
and Eq. 37 gives
L.bz(;.'.r;'_b.g:).l_ (57)

If Eq. 54 is enforced in algebraic form at t = 0
to determine bo, do, then the partly differential

set is conveniently rendered a set of coupled
quasilinear ordinary differential equations by
differentiation of Eq. 54:

‘ ' 8
$ofor v e £ (58)
Lo ool o o Bos 48
iF e S iy ke (59)

For ﬁb = H =1, Eq. 56 is an identity, c plays
no role, d d0 = 1 from Eq. 54 and/or Eq. 58,

=d = 1 from Eq. 54 and/or Eq. 58, and
y' = -1 from Eq. 55c and/or Eq. 57, so that
¥y = -t, since Wo = 0. Thus, as a special case,

this set can recover steady laminar flame propa-
gation (here expressed in a laboratory, as
opposed to a flame-fixed, frame of reference).
Since H = 1 for apprec1able reaction, Eq. 58
gives interesting insight into the relative
importance of the reaction order Ve and the non-

dimensional activation temperature 8. Incremen-
ting B by two has the same effect on the solution
as incrementing Ve by unity for H= 1; since

g = 0(10), Vg = 0(1), typically, an appreciable
change in Ves such as an increase from one to two,

has modest effect on the results.

The following results concerning the effect
of Lewis-Semenov number Le and of ﬁb on the rate

of recovery of laminar propagation speed are
obtained by numerical integration of Eqs. 55¢,
56-59, for ¢y = 1, 8 = 10, Vg = 1. For Le =1,




ﬁb = 0.9 (such that ¥g = -0.25) results in

H=0.97 and ¥' = 0.9 for t = 10, but Hy = 0.5

(such that ¥y = -0.005) results in effectively

no recovery at all, even by t = 100. Hence, for
too large a perturbation, steady flame propaga-

tion effectively is not recovered, according to

the model. Also, for Le = 1, H0 = 0.99 (such

that ¥y = -0.93) results in ¥' = -0.99 for

t = 3, but Hy = 1.01 (such that ¥y = -1.07)
results in ¥' = -1.01 for t = 1.9; hence,
recovery is faster for flame-temperature augmen-
tation than for flame-temperature depression.
For Hb = 0.9, at Le = 0.7 (such that w6= -0.26),

H=0.99att=17.5and ¥' = -0.99 at

t = 23.5; for H0 = 0.9, at Le = 1.3 (such that
¥y = -0.25), H = 0.9 at t =7.9and ¢' = -0.99
at t = 6.5 Thus, for larger Lewis-Semenov

number, both the flame temperature and the flame
speed are recovered sooner. It should be noted
that the influence of the Lewis-Semenov number
on the adiabatic flame speed itself is implicit
in the nondimensionalization; the influence of
the Lewis-Semenov number on the rate of recovery
of steady flame propagation after an initial
temperature perturbation is the matter under
study.

STRATIFICATION - Here, the Fourier integral
transform is used to derive Volterra integral
equations describing the effect of nonuniform
stoichiometry of the premixture on laminar flame
propagation; in particular, the error incurred
by using locally an appropriate steady-laminar-
flame-propagation formula to obtain the accelera-
ting or decelerating flame speed is sought. Of
course, nonuniform stoichiometry of the fuel/air
premixture is of current automotive interest
because of stratified-charge engines.

The initial/boundary-value problem posed by
Eqs. 34-47, and Eq. 22, is recast to allow a
more general initial condition, and to incorpo-
rate the conditions (Eqs. 40-41) in the partial
differential equations (35-37). Thus, over the
domain < < y < @, t > 0,

2

%.i;--f 8o - ¥). (60)
4 . (61)

- Le «F &y - ¥),

where §(z) is the Dirac delta function, ¥(t)
again denotes the position of the flame, and, by
definition,

r-n““"o{‘fﬁ?; : (62)

where, again, H = H(t) denotes the flame
temperature.
As t » 0,

“'NU oy=y, 0. ¥ +¥ % -1; (63)

3 1 - exp(v) ¢ A S(-y-L) for ¢ £ 0 (64a)
Y-

0 for ¢ 2 0, (64b)
exp(v/Le) for v £ 0,

¥ (65)
1 for ¢ 2 0,

where S(z) is the Heaviside unit steo function.
The step-type increment (or decrement) to the |
upstream unburned premixture is characterized by
a magnitude A at distance L from the initial
flame site in the streamfunction coordinate V.
The larger L, the more the step function diffuses
to a smoothed-out transition from Y = 1 to
Y = (1 + A) before the flame arrives.
The boundary conditions are

Yo (14A), T +0asy~-=(fort20); Y0, T +1as s+« (fort20).

{66)
Clearly the flame propagates from its initial
site at the origin in the direction of negative

The Fourier transform pair over the spatial
coordinate is introduced:

V(s,t) = f Y(61t) exp(-se)dy e Y(4,t) = 50y [V(s.t) exp(sv)ds, (67)

pes

with the transform parameter s = i¢. For brevity,
only the mass-fraction equation is developed; the
temperature equation is readily seen to be
similarly treated, so only the result is stated.
If tentatively the function F is formally
treated as known, and if contributions from the
integrations by parts are ignored (because the
contour of the inversion integral with respect
to singularities on the real axis is tc be so
chosen that the boundary conditions are incor-
porated), then application of the transform gives

-;—Y - sV « oF exp(=s¥): (68)
standard introduction of an integrating factor

for this first-order differential equation gives

t
V(sut) = (s,0) exp(s’t) -/ F(t') exp :sz(t-!')- ev(t 's at'. (69)
0

Further, the taking of the transform of the
initial condition gives




¥(s,0) = - % . ’—‘1 - Eup(u). (70)

Inversion of the contour integrals [29] gives

Y(s.t) = ;cﬂc (;—;}7,) - -:ynv(!'u) erfc (t'/? N “ﬁ)
2t
)
A . 1
+ 5 erfc (—!,tT’%) > 2:777/ “"&_.){7? np -'T_U"'Jl ( dt' (71)

The physical role of each term is now noted.
Each of the first three terms on the right-hand
side of Eq. 71 gives the time evolution of one of
the three terms on the right-hand side of the
initial condition (Eq. 64a); the first term of
Eq. 71 is derived from the first term of Eq. 64a,
etc. The fourth term on the right-hand side of
Eq. 71 is consumption at the thin flame.

The result of Eq. 71 is given in laboratory
coordinates; it is convenient to transform to
flame-fixed coordinates:

(¥,2) = (2.8), with £ = ¢ ¢ m(t). (72)
Eq. 71 is rewritten:

Y(z.8) = 7 erfc (-;"‘ $ )- }up (& t-m(t)) erfc (L.%”Ll) (73)

2
A -mft)el) 1 F(t [e-m(t) +m(t" .
‘z""(‘—zfﬁr) mf;f‘ﬂﬂ "93 ‘HTP‘L:““

The flame is situated at ¢ = 0 for all time t.

Enforcement of Eq. 39 gives

o+ Jerte (- 2 Homo(e-nto)] Jerre (255402) (74)
e (S258) - S [ &% o - 87t o

t
For A=0, F=1, m=1t is a solution of this
intearal equation; for A# 0, H# 1, soF # 1,
and H and m nust be found. Whereas Eq. 74 gives
one equation for the two unknowns, the secord is
obtained from consideration of Eqs. 61, 62, 65
and 66. It is found that

nlo.t) * % erfc (W 7 exp [:’_‘r"‘_(ﬂ] erfc x_z(’L:(!-)mSt))
e (75)
L._nL:)GTL;_JLz ot

el r(ti %
2(r L /tt) ep

Enforcement of Eq. 39 gives, if it is recalled
that h(y,t) - H(t) as ¢y » ¥(t),

Rte) = } ert ( m(t) ) (t e (2t-0t)
; o 2(Le t)  iad kol 2(Le t)
2
1 F(t' ' [m(t) -m(t')] '
1 u)”’{ (t-t') m{ (e }d' y

For H=1so that F=1, m=t is a solution of
this integral equation for all finite values of
Le. Eqs. 74 and 76 constitute the coupled

relations for H and m; once these two unknown
functions of time are determined, substitution in
Eqs. 73 and 75, or then-straightforward numerical
integration of Eqs. 60-66, yields the mass-
fraction and temperature profiles at any (z,t).
Because a convergent iterative procedure
for the treatment of Eqs. 74 and 76 is not an
entirely trivial matter, some discussion is given
here, prior to presentation of numerically-
obtained results. First, the integral term in
Eq. 76, denoted I,[t,m(t):Le,vc,8], and the

integral term in Eq. 74, denoted Il[t,m(t);
Le.vF,s]= Iz[t,m(t);l.vF,s] are integrated by
use of linear interpolation, as now indicated.
Discrete time intervals of interest are selected:
ts’ s =1,2,3, ..., where ts+1 > ts and tl = 0.
Then, for example,

lzhs""(' )ile,vp.8] =

"" Q Led () umle; )it om(t, )iLe, vy ] (77)

!)/}

Z(v« Le)

where ti is a dummy variable of integration. Here

[m(t_ ) -m(e: )J

rrm““‘*n

2
Cf g sy [mns)-mnln |
L U B e Rl M

QJ[tj.ﬁ(ts).m(tj);ts.m(ts);Le.».r.eJ;r[zi.i(xi) O ) | up

0Lty Al )um(e )it um(t )iteave 8] (78)
B il L 3 i o L SN TR AR
ta - Y s €

over the domain tj S.tj S.tj+1- Substitution

of Eq. 78 in Eq. 77 and integration give
Iz[ts,m(ts);Le,vF.B] as an algebraic, as opposed

to integral, expression. For Le = 1, Eqs. 74
and 76 sum to

- A l"“s)

H(!s) ey erfc[;—TTn- ; (79)

S

Use of Eq. 79 in Eq. 76, together with the con-
cepts of Eqs. 77 and 78, yields one transcen-
dentally nonlinear algebraic equation for one
unknown, m(ts). A first guess may be obtained

by linear extrapolation from m(tS 1) and m(tS 2);

for early times, m(t) = t furnishes guidance. A
second guess may be obtained by perturbing the
first guess by a small amount. Newton's rule,
with finite difference approximation of the first
derivative based on the last two iterates from
m(ts). quickly yields effectively invariant suc-

cesive iterates for m(ts) --and, by use of Eq. 79,
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for H(ts) -- and, hence, quickly achieves con-
vergence to a solution for ts. Now, let s > (s+1),

i.e., increment time, and repeat the procedure.
For Le # 1, an analogue to Eq. 79 is obtained as

follows: multiply Eq. 74 by (Le)'l/2 and, then,
subtract Eq. 76 from Eq. 74 to produce

= 1 n(t.) ) 3 (-m(t ) )Q
H(t.) = 5 lerfc [ — - - — erf S
i % : r'(2(|.« ts)W w2\, ts|/2 f

=0 : (‘s""('s) 4 (2 to-m(t,)
exp { —— erfc
3 o ) 2e t,) 72)

iy 2 ts-m(ts)
= (LSW? exp (ts-mus) erfc ——Zt—sW«

1
+ {igltgam(t )ite,vp 8] - o Lltgm(t)ilvgell (80)

The (small) difference of the last line of Eq. 80
is evaluated as a number, by use of the best
current estimates for m(ts), H(ts); the first

three lines of Eq. 80 are left as written. Then
Eq. 80, for Le # 1, serves the analogous role
that Eq. 79 serves for Le = 1, i.e., substitution
of Eq. 80 in Eq. 76 gives one nonlinear algebraic
equation for m(ts). to be solved by iteration

(using Newton's rule to obtain the root) until
invariance of successive iterates for m(ts)

indicates convergence. Use of this result for
m(ts) in the first three lines of Eq. 80 yields

an updated ﬁ(ts). These values for m(ts), F(ts)

become the most current estimates, and the
entire procedure can be repeated until conver-
gence is obtained.

Results are presented in Figs.2 through
4; spatial profiles for Y and T, at fixed time
t, may be more readily obtained from numerical
integration of Eqs. 60-66, with H(t) and y(t)
known, than from Eqs. 73 and 75. A question
arises concerning how adequate Eqs. 21 and 24
are as a means of obtaining the instantaneous
flame speed when the flame is propagating through
the stratification gradient, such that the effec-
tive upwind mass fraction varies from unity at
t =0 to (1+A)at long time. The following
calculations indicate that the "quasisteady"
calculation is but about 5% or less in error,
and, thus, fully adequate for most engineering
applications. For isobaric flow with ¢ << 1,

since B (YFu)'l, from £q. 21

2 Vesl <(ve+1)
e Oea) Ty exp(-g,) m=> (81)

1.25 . . T
1.2f
1.15¢
H
1.1}
1.05}
1.0 s ) .
0 5.0 10.0 15.0 20.0

t

Fig. 2a - From Volterra-integral-equation for-
mulation of thin flame propagation through a
stratification in stoichiometric ratio of the
unburned premixture, the dimensionless flame
temperature H as a function of time t, for values
of the dimensionless activation temperature B

and stoichiometric coefficient for fuel vg.

Here, Le = 1, A = 0.2, L = 10. It may be noted
that H(0) =1

(=172 (yp#1)/2

(@) (=) (B) el (-= )

a1 2

\Y

@Gy ~fr0-mp =

since (32/31) = (YFul/YFuZ)' Subscript 1 denote§

the initial condition (for which the upwind
asymptotic value of the mass fraction YFul =1);

subscript 2 denotes the effective upwind asymp-
totic value of YFu at some later time. Since

m'(t) is a dimensionless flame speed relative to
the gas, for fixed cold-premixture density,

) el e




-

where mi = 1. The largest (or smallest) value
that the ratio (YFuZ/YFul) achieves is (1 + A),

a value independent of both L and Le; this
limiting value occurs for t + w:

mites) o« (1o )" e (mr‘f n) ; (83)

Some appreciation for the relative roles of para-
meters is obtained from the following calcula-
tions (unless otherwise specified, g = 10,

Vg = 1, A = 0.2 so mé(t +»w) » 2,76): for A=-0.2,

mé(t » w) » 0.23; for g = 15, mé(t + w) > 4,19;
for Vg * i mé(t + w) » 3,31,

For Le = 1, an integral exists for steady
laminar isobaric adiabatic flame propagation in
the form (Y + T) = const., where T = 0 at the
cold boundary and Y = 0 at the hot boundary.
Heuristically, this relation can be employed to
define an instantaneously equivalent steady
problem for a flame propagating through a fuel-
mass-fraction gradient. Specifically, fuel mass
fraction upwind, where the normalized temperature
is zero, is associated with the instantaneous

5.0
= ’I's. vr-‘
4.0
3.0
dm
dat
2.0
100‘
0 1 L 1
0 5.0 10.0 15.0 20.0
t

Fig. 2b - From Volterra-integral-equation for-
mulation of thin-flame Kropagation through a
stratification in stoichiometric ratio of the
unburned premixture, the dimensionless time
rate of change of the flame position in von
Mises coordinates dm/dt as a function of time t,
for values of the dimensionless activation tem-
perature R and stoichiometric coefficient for
fuel vp. Here, Le = 1, A = 0.2, L = 10. It may
be noted that i’l(O) = ]

11

temperature at the flame, where the fuel mass
fraction vanishes: YFuz(t) = H(t). For t + 0,

Ypgp = Ngal Al for €+, Yoo + H(E + @)X {1+4).
With Fp o = H(t), a "quasisteady" my may be

computed from Eq. 82c to compare with the instan-
taneous mé caiculated from the two simultaneous

integral equations. For the parameter ranges
B = 0(10), v = 0(1), A = 0(10™), the flame

speed m' is underestimated by no more than 6%
by the "quasisteady" approach. A
For Le = 0(1), the equivalency Fruz(t)f H(t)

may be defined again for purposes of comparing
a "quasisteady" flame speed with the instanta-
neous mé calculated from solution of a flame .

propagating through a premixture of nonuniform
stoichiometry. The cited integral, (Y + T) =
const., no longer holds, so that the concept
that, in steady laminar adiabatic isobaric flame
propagation, the hot-boundary temperature
achieved from a given cold-boundary premixture
is independent of Lewis-Semenov number, is

employed. However, as Le departs from unity,
the accuracy degenerates,

1.25

102_

4_ Le=0.8
1.1 Le=1.0

R le=1.2

1.1

] 1 ]
0 5.0 10.0 15.0

t

20.0

Fig. 3a - From Volterra-integral-equation for-
mulation of thin-flame propagation through a
stratification in stoichiometric ratio of the
unburned premixture, the dimensionless flame
temperature H as a function of time t, for
several values of the Lewis-Semenov number Le.
Here, A = 0.2, L = 10, vg = 1, B = 10. It may
be noted that H(0) = 1
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Fig. 3b - From Volterra-integral-equation formu-
lation of thin-flame propagation through a strat-
ification in stoichiometric ratio of the unburned
premixture, the dimensionless time rate of change
of the flame position in von Mises coordinates
dm/dt as a function of time t, for several vdlues
of the Lewis-Semenov number Le. Here, A = 0.2,
L=10, Vg =1, B = 10. It may be noted that
m(t) =~¥, m(0) = 0, and dm(0)/dt = 1

PROBLEMS IN FLAME/WALL INTERACTION

ISOBARIC COLD-WALL QUENCHING - The isobaric
treatment of querching of combustion near a cold
wall is more pertinent to automotive applications
than first appears, in that there is no signi-
ficant pressure rise owing to compression over
the time interval for flame/wall interaction,
for not-too-lean premixtures. There may be
significant pressure transients owing to im-
pressed piston motion. However, for lower rates
of engine revolution, the present case should be
adequate.

For the domain of interest 0 < y < =, t > 0,
the initial/boundary value problem becomes
Eq. 22, with p = 1, together with

'H’.}%-La:—:;-o foryecyc<e ; (84)
2 2
%%-i;-o,g%-ui-}-o foro<cy<y . (85)

At the cold noncatalytic wall, the boundary con-
ditions are

1.3 T T T

A=0.2,L=1

A=0.2,L=10

1.2

1.1
i

1.0

A=-0.2,L=10
0.9}
0.8 : L '
0 5.0 10.0 15.0  20.0
t

Fig. 4a - From Volterra-integral-equation formula-
tion of thin-flame propagation through a stratifi-
cation in stoichiometric ratio of the unburned
premixture, the dimensionless flame temperature

H as a function of time t, for values of the mag-
nitude of change in unburned fuel mass fraction A
and the dimensionless initial distance of this
change from the flame L. Here, Le = 1, Vg = |,

B = 10, H(0) = 1. It may be noted that the case
A = -0.2, L = 10 has been terminated at a time
beyond which there is little of interest

H‘O.%ol)lsu-O(iort:O). (86)
while at the hot reservoir,
h+Vlasy~w=(fort?0) (87)

At the flame, y = ¥(t), given initially by
¥(0) = ¥o >> 1 (given const.), conditions of tes

40 and 41, with p = 1, hold; the quantity F(t),
introduced in Eq. 62, is to be used again below.
The initial conditions are given by Eqs. 43 and
44, with no =1,d5 1, by 1. A fuel-lean

thin vigorous flame, initially far from the cold
impervious noncatalytic wall, propagates towards
the wall and interacts with it.

Derivation of Volterra yntgarai Equations
by Integral Transform - Fir: ', ntegral -
equation reduction to a problem in time only is
executed. The semi-infinite domain in y is
extended to the full-infinite domain via odd
symmetry for the temperature, and even symmetry
for the fuel mass fraction, about ¢ = 0; the
boundary conditions at the thin flame ¢ = ¥(t)




are incorporated in the partial differential
equations by use of the Dirac-delta function, as

was done earlier. Hence,
2
g—}-i-}--ra[w-nl-utwvl. (88)
aT 327 rély + ¥). (89)

ﬂ-ua—*"”[*"]‘

v
Application of the Fourier integral transform
over y is now straightforward. However, the
initial conditions must be modified slightly to
preserve the even symmetry of Y(y,t), and the odd
symmetry of T(y,t). Here, it is taken that, as

t-0,

0 for |¢| > Yo

(%0)
cosh(a ¥y) - cosh(a ¥)
———~<cs-$m@——_--r—‘ for fy| < Yo+
1 for |¢| » Vo

g™ B (91)

nhig

%ﬁh{?%b for |v| < ¥g.

where o, are constants to be assigned, such
that these forms simulate initial conditions.at
the flame front (y + WO_) as closely as possible.

Satisfaction of the boundary conditions for
¥ » ¥y for an adiabatic flame gives

4y a sinh(a '0) 92
&.Q . = -cm\"_orT =1 ( )
Le ::9 1 =g coth(8 ¥,) = i‘.. . (93)
For Vo aid l'
u.'.ﬂ-—l; (94)

Le

Also, TO(W) and Yo(w) are virtually identical to

the initial profiles first discussed.
As before, the Fourier transform of Eq. 88
over | yields formally

;; . L e [.-n . ."]_

(95)

Fisat) = ¥Wis,0) enp(s“t)

L
< f 1) femnls? (e )1 {mnolsv(e)] + explsv(e)]) gt
0

(96)
But, from Eq. 90, with A-cosh(a‘&'o)/[cosh(avo)-l].

sinn[(s-a) ¥,] sinh{(s%a) v,)
o)+ o | Ty - m—%ﬁ: (97)

Insertion of Eq. 97 in Eq. 96 and inverting gives
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Fig. 4b - From Volterra-integral equation formula-
tion of thin-flame propagation through a stratifi-
cation in stoichiometric ratio of the unburned
premixture, the dimensionless time rate of change
of the flame position in von Mises coordinates

.dm/dt as a function of time t, for values A and

L. Here, Le =1, vg =1, g =10, m(0) = 0,
dm(0)/dt = 1. It may be noted that the case
A =-0.2, L = 10 has been terminated at a time
beyond which there is little of interest

Y(y,t) = A ‘[erf(wwo) '(‘»vo )]
Uit) = —75) - erf| =7
? 2t 2t
W el (“‘o m) (*"o m)
v f + at - f + at
4 coshlav, [" PTH . i PRIH

1 O t-aw (wvo ‘/?) (v--vo ‘/2)
B erf - at - erf - at
) coiﬁluvoi [ zt177 2‘17? -

=i of'm.) [1‘}’. i ‘*n‘«'ﬁ“{‘lwv{ ‘hﬁ*ﬂ] -

(98)

The terms which multiply A describe the time
evolution of the initial conditions, while the

integral term describes chemical consumption.
Similarly,




¥

o) o )

2(Le t)

- Y%
0

t
+ '—Tﬂl F(t')
2(nLe) " [

Enforcement of Eq. 39 gives two simultaneous
nonlinear Volterra integral equations for the
two unknowns ¥(t), H(t) from Eqs. 98, 99; once
solution is obtained, spatial profiles may be
found from the same two equations. Of course,
by calculation of normalized residuals for

TEW(t).t][=H(t)] and Y[¥(t),t], Eqs. 98 and 99
also may be used to characterize the accuracy of
solution for H(t) and ¥(t) obtained by an alter-
native, approximate method, such as the integral
method now discussed.

Derivation of Initial-Value Problem by
Integral Technique - The problem is given by
partial differential ecuations (Eqs. 34-85);
boundary conditions (eqs. 86-37); supplementary
relations (Eq. 22) and flame conditions (Egs.
40-41), all with p=1; and initial conditions

(Eqs. 43-44, with F0= 1, dy = 1, by = 1).

First, the (so-called) Landau coordinate
transformation [30] is introduced to fix the
flame position:

(100)

(vst) = (0,t), with o = y/¥(t).

The initial/boundary-value problem for Y(o,t),
h(o,t), H(o,t) is restated (here primes denote
ordinary derivatives with respect to time,
denoted by t):

(101)

for 1 <co<w;

u L
R e RSB0 roco<1.(102)

The boundary conditions, for a cold isothermal
noncatalytic wall, and for the far field, are

u.o,goonuoo(urtto);h~luoo~(fort20). (103)

s el | il

Le 87t * By vy v
1e 0 /2 172
* ST V) [m(z(u a2’ s ) ; m(Z(u o2’ ik )]
2
Le 8%t - By ey vy
le 172 12
T 3 STaR(E VT~ [or! (—%72(1.0 o B(Le t) ) - erf(m - BlLe t) )] [(a

Sv(t'))? S & +y(t'))?
exp {- #E&Tf?i{.)m{ HFQT}]G!'- (99)

The conditions at the flame, o = 1, are:

h+H H-H Y=o0,

(104)

1

+
%ou%)-u%]»o. uith%--ﬂvf elp!-;%}.ISc:*l

(for t 2 0).

(105)

The initial conditions are, for H(O) =H,
¥(0) =¥y >> 1:

=1’

h+hy=1ast=0(for1c<oc<e);

(106)

.
-

H+Hy= exp{-?o(l-o)/l.e). Y+ Vo =N -exp(-vo(l-u))] as t -0
(for 0 S0 S ).

(107)

For ¥, >> 1, as noted previously, these condi-
tions are compatible with the boundary conditions
to within (exponentially) small error.

The following representations of the depen-
dent variables are taken to be good approximations
for all time:

at) « 1 (1 W) oo {- O forvsoses (108)
sinh { Xt °}
H(o.t) = A(t) —— L& DLt
sﬁnh{L: :t)} (109)
cosh { 1o
non)-t-;;%§E¥? for 0o 1. (110)
For b(0) = b, = 1, d(0) = dy = 1, these adopted

0
forms are closely compatible with the initial
conditions. The two flame conditions at o = 1
involving gradients, and the three partial
differential equations, yield five relations
for the five_unknown functions of time b(t),
c(t), d(t), H(t), ¥(t). Initial values are:

R(0) = Hy = 1, ¥(0) = g >> 1, given const.; c(0) = o * 1 (formaily). (111)




The values of b(0) by d(0) = d, are to be

in the manner now described.
The flame conditions (Eq. 105) give

s e S8 ()
n i) ep . £ 00N
-, et (113)
At t = 0, for Yo > 1, these give bo'&d0 & ]

by inspection. Differentiation with respect to
time gives for Eqs. 112 and 113, respectively,
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In general, the partial differential equa-
tions may be integrated with respect to o, upon
imposition of the boundary conditions and of the
flame conditions, to yield

R

\
where © -fv do. fen(t), (’;-!)' < 0L, fen(t
0

(116)
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(117)
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For the specific forms adopted,
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(v/Le b% ﬂnht%/to%) (a« ¢ " unﬁv/u b (.«n). R S e B
(120)

(121)
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Hence, from Eqs. 116 and 117

[(¥/4) snh?h/d)- tanh(y/d))d' + [unvﬁvm)]v .

_ tanh(y/d) : (122)

[" Aﬁﬁfﬁzsj]h"[L;1ﬁm%nr?xﬂ"‘[§]“"f%% v (123)
and from Eq. 118
(V-H)e* + &[\;_Wl ¥' -l s :—;ﬁc , (124)

This last equation states that, if HO =1, H=1

at all subsequent time; this artifact of the
approximate procedure is circumvented by starting
with a value of H slightly displaced from unity.
The fact that the calculational procedure tends
to establish a steady propagatin? flame.while
still away from the wall (¥ >> 1), provided “0

is not too far from unity, is established in the
section on the effects of transients on flame
propagation.

Equations 114-115, 122-124, subject to the
initial conditions implicit in Eqs. 111-113,
constitute the sought-after initial-value problem
for b(t), c(t), d(t), H(5), ¥(t). Substitution
of the results in Eqs. 108-110, 22 gives the
solution for Y(y.t), T(y,t), ¥(t); results depend
on the parameters K, B, Vg and Le. (Wo. Co ﬂb

must also be selected, but there is minor sen-
sitivity to these quantities introduced by the
method of solution.) (See Figs. 5-8.)

Other output quantities of interest are the
rate of fuel consumption at the flame (i.e., the
derivative of the fuel mass fraction at the
flame), the fuel mass fraction at the wall, and
the temperature gradient at the wall; these
quantities are, respectively (if Xf(t) is the

sztg)in the Cartesian coordinate of the flame
Y(t)):

i el
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(3‘)1 ekl (125)
Y, - SR (126)

(3), - 7 sivficdley = (%)« P srlafisdlyy —

(%), - 7 ity - (127)

The association of Cartesian and von Mises
coordinates is

oshvoLeb-l) for 0 < o0 €

*(c'KVQ sinh(v/Le
o (128)

X+ ¥ ((m)(o-l) : Mﬁ-fff-(;;’-(”—‘—M) T D
where Xf(t) is given by

1
x,.v/n.um.v(“;,-“,[%g;%ﬁ}[,—-m‘l). (129)
0

Adoption of a thin-flame model furnishes a
natural and an explicit definition of quench-
layer thickness. The rate of change of the
flame position with time in the Cartesian
coordinate is

_ o,

,:a—t—-x;-(lumv"%‘!{{%ﬂé}&’ﬁ)—‘—u. (130)
The gas speed at the flame is

ax(y ,t) )
e il .KJf£!¢,.£$s[éﬁ EL ]
f ( at )w ¢ at ¥ (3«)' (33'

U

=3 io:h::b-l' (131)

Thus, the speed of the flame relative to the
speed of the gas at the flame, (Uf -uf) is

(1+KH)y'. Injtially, for,¥ >> 1, H =1, and
y' = -1, so Ug = -1 and ug = K. Finally, a

quantity defined to be the net remaining fuel,
N(t), is introduced

!
Isfp'dx"f'do

0 0

« y - d tanh(v/d) , (132)
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Fig. 5a - From integral-method results for a cold
wall (at temperature T = 0), profiles for the
mass fraction Y as a function of the coordinate
o[= y/¥(t)] at time t = 8.04, for several values
of the dimensionless Arrhenius activation tem-
perature B. Here, K = 6, Le = 1, Vg = 1, and the
initial time is defined by ¥(t = 0) = ¥5 = 10.
This is the first of five figures which describe
the augmented quenching for flame interaction
with a cold wall with increase of the activation
temperature g
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Fig. 5b - From integral-method results for a cold
wall (at temperature T = 0), profiles for the
temperature T as a function of the coordinate
o[=y/¥(t)] at time t = 8.04, for several values
of the dimensionless Arrhenius activation tem-
perature B. Here, K = 6, Le = 1, Vg = 1, and the
initial time is defined by ¥(t = 0) = ¥5 = 10




where the subtracted temm in Eq. 132 is identi-
fied to be the depletion of fuel ahead of the
flame owing to the presence of the flame.

IS IC ACCELERATION TOWARD AN ADIABATIC
WALL - Derivation of Volterra Integral Equations

by Integral Transform - The entire derivation
leading to Eq. 98 holds without modification.
However, because Eq. 86 is altered to

oo owmeeoterezon (133)

Eq. 81 is revised to

Tl

Wl rdenerdeen cacvonezo (134)

to enforce the evenness of T(y, t) about v = 0
for the adiabatic case. Also, Eq. 92 is revised,

so that, as t ~ 0

coshisy) - 1 for lel < ¥
T(ot) + Tolw) » ko i ! (135)
1 for (vl > ¥,
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Fi?. 5¢ - From integral-method results for a cold
wall (at temperature T = 0), profiles for the
position of the flame in von Mises (mass-weighted)
coordinates ¥ as a function of time t, for

several values of the dimensionless Arrhenius
eptivation temperature 8. Here, K = 6, Le = 1,

r = 1, and the initial time is defined by
¥(t = 0) = ¥o * 10
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Fig. 5d - From integral-method results for a
cold wall (at temperature T = 0), profiles for
the net remaining fuel N (defined by Eq. 132)
as a function of time t, for several values of
the dimensionless activation temperature 8.
Here, K = 6, Le = 1, Vi = 1, and the initial
time is defined by ¥(t = 0) = Y9 = 10
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Fig. Se - From integral-method results for a cold
wall (at temperature T = 0), profiles for the
flame temperature H as a function of time t, for
several values of the dimensionless Arrhenius
activation temperature B. Here, K = 6, Le = s

V{ = 1, and the initial time is defined by
Y t = 0) & yo - 10
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Fig. 6a - From integral-method results for a
cold wall (at temperature T = 0), profiles for
the position of the flame in von Mises (mass-
weighted) coordinates ¥ as a function of time t,
for several values of the Lewis-Semenov number
Le. Here, 8 =10, K =6, vp = 1, and the initial
time is defined by ¥(t = 0) = ¥g = 10. This is
the first of three figures which describe the
augmented quenching for flame interaction with a
cold wall with increase of the Lewis-Semenov
number Le

Eq. 93 is revised, so that

sinn(avo)

. EESI i
Legm+lasy vy 9W e (136)

For ¥y >> 1, B 2 (1/Le), as before. Fourier

transformation over y, integration over time,
and inversion of the transform gives
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Fig. 6b - From integral-method results for a
cold wall (at temperature T = 0), profiles of
the net remaining fuel N (defined by Eq. 132)
as a function of time t, for several values of
the Lewis-Semenov number Le. Here, B = 10,

K =6, Vp = 1, and the initial time is defined
by ¥(t = 0) = ¥ = 10
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Fig. 6¢c - From integral-method results for a
cold wall (at temperature T = 0), profiles of the
thin-flame temperature H as a function of time t,

for several values of the Lewis-Semenov number Le.

Here, g8 = 10, K = 6, Ve = 1, and the initial time
is defined by ¥(t = 0) = yg = 10
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Enforcing T[¥(t),t] = H(t) yields an integral
equation to complement the one found by enfor-
cing Y[¥(t),t] = O for Eq. 98.

Derivation of Initial-Value Problem by
Integral Technique - The entire discussion from
Eqs. 100-110 Eoias unaltered, except for the
temperature boundary condition at the wall; i.e.,

the first of Eq. 103 becomes 133, so Eq. 109 is
revised to

] L
W(eut) = A(L) c-o—’-L. e } for 050 S, (138)
Cbih‘ ) }

Thus, Eq. 112 becomes
.a@fﬂl.iumgﬂﬁﬁl_oﬂu.o, (139)

so Eq. 114 becomes
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+ Ltanh(¥/d) + (v/d) sech (v/a)] ~[ - W AL Sech v/te biy!
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o i Vtamngeste v) 2 ] 4
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Also, Eq. 123 must be replaced by

M ' b ’ V' 1“
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After Eqs. 139 and 113 are used to assign bo. d0

for specified values of Le, R, VEs HO‘ and Yoo

then straightforward integration in time follows
by use of Eqs. 115, 140, 122, 141, and 124,
Output quantities of interest for the adia-
batic wall are the rate of fuel consumption at
the flame and the fuel mass fraction at the wall;

these are given by Eqs. 125 and 126, respectively.

The temperature at the wall is also of interest:

R, * H sech(¥/Le b). (142)

Since ¥ goes from Yo (>1) to 0, Hw(t) goes from
effectively zero to the temperature at the flame

. as the flame front accelerates towards the wall.

The association of Cartesian and von Mises
coordinates is

K H sinh(¥o
'(“‘ﬁﬂ?i*é&ﬁ%?n) WS it
yov(ﬂden-“m Ltpltyeelite < )urlso:n

(143)

where xf(t) is given by

8.0
K =17
6.0 RS
K=5
Ug
4.01-
2.0+
E
Vol WAy TRTREN MU L) (RY:

Fig. 7 - From integral-method results for a cold
wall (at temperature T = 0), profiles for the
(normalized, stoichiometrically adjusted) mass
fraction Y and for the dimensionless temperature
T as a function of the dimensionless Cartesian
coordinate x, for several values of dimensionless
time t. Here, B = 10, K = 6, Le = 1, Vg = 1.

The initial time corresponds to von Mises (mass-
weighted) spatial coordinate ¥(t=0) = ¥y = 10.
Whereas ¥'(0) = -1, the initial flame temperature
H(0) = 1, and the initial net remaining fuel

N(0) = 9, the calculation is terminated at

t = 8.99 with v'(0) = 0.123, H = 0.896, and

N = 0.434. The flame speed U; increases from an
initial value of -1.00 at t=0 to a maximum value
of -1.37 at t = 7.42, then decreases rapidly
{with uf(t = 8.99) = -0.372]

0 2.0 4.0 6.0 8.0 10.0

Fig. 8 - From integral-method results for a cold
wall (at temperature T = 0), the speed of the
flame in a laboratory frame of reference U, as a
function of time, for several values of the exo-
thermicity parameter K. Here, g = 10, Le = 1,
Vg = 1, and the initial time is defined by
\{J(t= 0)=\yoa 10
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. K H tann(v/Le b) . (146)
N et ] (147)

Results are given in Figs. 9-11.
NONISOBARIC ASPECTS OF FLAME/WALL INTERACTION

For a contained premixture, the isobaric
approximation requires reconsideration, and the
initial/boundary-value problem, as presented in
Eqs. 22, 34-47, is to be examined. The integral-
equation approach, developed above for isobaric
interaction of a flame with both a cold iso-
thermal wall and also an adiabatic wall, has
been generalized to the nonisobaric case for
both types of wall boundary conditions. The
generalization does require simultaneous solu-
tion of six quasilinear coupled ordinary dif-
ferential equations, since the spatially
invariant pressure, p(t), joins the five unknown
functions treated for the isobaric case. Inte-
gration of the middle equation of Eq. 22 over
the flow domain, enforcement of the impervious
condition on the velocity at the containing
walls, and substitution of the adopted spatial
variation of the temperature yield the sixth

1.0
0.8 .0
0.6
Y
0.4
0.2
0 N Sy e | TR
0 4.0 8.0 12.0 16.0

Fig. 9 - From integral-method results for an
adiabatic wall, profiles of the (normalized,
stoichiometrically adjusted) fuel mass fraction
Y as a function of the dimensionless Cartesian
coordinate x, at several times t, where the
initial position of the flame in von !lises
coordinates Y5 =10. For this nominal case,

Le = 1, K=5. Since the nondimensional tem-
perature T = 1-Y, the wall temperature T(0,t)
rises rapidly to the adiabatic flame temperature

equation to complement the five obtained from
Eqs. 35-37, 40-41. Details and results are
reserved for another publication.

The conjecture here is that significant
flame/wall interaction occurs over a few diffu-
sion scales only; thus, as long as the bulk-gas
flame speed is appreciable (i.e., the premixture
is not so fuel-lean that the laminar propagation
speed is highly retarded), the quenching of the
flame near a cold wall, or the acceleration of
the flame near an adiabatic wall, is isobaric.
The compression-enhanced pressure level attained
by the burning of the entire confined mass of
gas is the pressure level to use in the near-
wall analyses. The final pressure attained in
a homogeneous fuel-lean premixture, uniformly
at pressure p* at the initiation of burning

in a container of length L*, may be shown b
thermodynamic arguments to be p} = pj + (y-1

Yru p; Q* L*, in the absence of losses (whlch

may be substantial). The anticipation is
that results obtained from an inteqral-
equation method for a confined premixture will
confirm the conjecture that flame/wall inter-
action is virtually isobaric, as far as compres-
sion from confinement is concerned.

However, there may be significant pressure
change over the time interval of flame/wall
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Le = 1.
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Fig. 10a - From integral-method results for an
adiabatic wall, profiles of the dimensionless
temperature T as a function of o(= y/¥, where y

is the von Nises spatial coordinate and y is the

flane position), at time t = 7.52, where ¥, =

= 0) = 10, for several values of the Lewis-
Semenov number Le. Here the dimensionless
Arrhenius activation temperature g = 10, the
stoichionetric coefficient for fuel Vg = 1, the
exothermicity factor K = 6. Augmenting the
thermal diffusivity preheats the unburned fuel
more effectively
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Fig. 10b -From integral-method results for an
adiabatic wall, the flame position in von Nises
coordinates ¥ as a function of time t, for
several values of the Lewis-Semenov number Le.
Here, 8 = 10, v = 1, K = 6. The larger the
Lewis number, tﬁe more rapid the final accelera-
tion (from an initially constant-speed propaga-
tion) of the thin flame into the wall, owing to
interaction with the wall; because of large
terminal gradients, the calculation is not
completed except for Le = 1, thouch ¥ » 0 at
finite time in the model

interaction from piston motion during operation
at higher rates of revolution [14]. Prescribed
movement of a wall in time presumably suffices

to simulate piston motion in the one-dimensional
unsteady reacting flows under study. It is worth
emphasizing that it is piston motion (and, hence,
wall motion) that is prescribed as a function of
time; the wall motion must be translated into a
variation of pressure with time.

DISCUSSION AND SUMMARY

The fo!lowing properties of results, ob-
“tained by use of a thin-flame model to describe
isobaric unsteady one-dimensional laminar flame
propagation through a fuel-lean premixture under
‘a direct one-step irreversible exothermic chemi-
cal reaction, seem worth notinag.

First, for a spatially unbounded domain, the
effect of heat extraction from, or of heat addi-
tion to, a flame, on the rate of recovery both of
steady propagation and of flame temperature are
recalled to be as follows. The rate of recovery
is faster for larger Lewis-Semenov number, and

0 2.0 4.0 6.0 8.0 10.0

Fig. 10c - From integral-method results for an
adiabatic wall, profiles of the dimensionless
fuel consumption at the thin flame, -3Y(y,t)/at
as a function of time t, for several values of
the Lewis-Semenov number Le. Here 8 = 10, v =1
K =6, ¥g = 10. The consumption rate at a fExed
tine increases monotonically with Lewis number
after flame-wall interaction begins

for flame-temperature augmentation (as opposed

to flame-temperature depression). For too large
a flame-temperature depression, steady flame
propagation is not recovered at all, at least not
for that time span of practical interest for many
purposes. These results are obtained here by
approximate, integral-method treatment of a thin-
flame formulation.

Second, also for a spatially unbounded
domain, the transition between steady flame
propagation at one stoichiometric ratio through
a continuous change to steady flame propagation
at an augmented (or decremented) stoichiometric
ratio, is examined by means of numerical solution
of simultaneous nonlinear Volterra integral
equations, obtained by application of the Fourier
transform to the thin-flame formulation (Figs. 2
through 4). The time required for transition
through a given fuel stratification decreases
with an increase in either the Lewis-Semenov
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Fig.10d -From integral-method results for an
adiabatic wall, profiles of the temperature at
the thin flame H as a function of time t, for
several values of the Lewis-Semenov number Le.
Here, 8 = 10, vf = 1, K = 6, ¥g = 10. The flame
temperature at a fixed time increases rnonotoni-
cally with Lewis number after flame-wall inter-
action begins. Since H(t) = 1 for Le = 1, the
parameters Vg, B8 play no role in this case

number, or the reactior order with respect to
fuel, or the dimensionless Arrhenius activation
energy, or the sharpness of the fuel stratifica-
tion. Also, the time requires for transition is
less for propagation through a fuel enrichment of
a given magnitude, as opposed to propagation
through a fuel decrement of the same magnitude.
Further, judicious use of a steady-flame-propa-
gation relation yields the flame sneed through
the stratification, with error on the order of a
few percent; that is, a quasisteady approximation
normally should suffice to describe the flame
speed and flame temperature through the transi-
tion. Incidentally, with knowledge of the flame
speed and flame temperature as a function of
time, should the entire spatial profile for fuel
and/or temperature be required, it seems numeri-
cally easier to return to the differential-
equation formulation to obtain results, rather
than to seek such information from the integral-
equation formulation.

Third, attention is turned to results from
integral-method treatment of the retardation of
flame propagation as a cold wall is approached
(Figs. 5-8). The cold-wall problem (and other
problems) have already been treated by Buck-
master [31] by the thin-flame approximation.
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Fig. 11 - From integral-method results for an
adiabatic wall, profiles of the (normalized,
stoichiometrically adjusted) fuel mass fraction
Y as a function of the coordinate o(= y/¥), at
time t = 7.52, where ¥y = ¥(t=0) = 10, for
several values of the Lewis-Semenov number Le.
There is a slight depression of the value of Y
for Le = 1; i.e., there is a nonmonotonic varia-
tion (according to the approximate method)

However, we are unable to infer from his paper
the results in any of our figures 5a-5e, 6a-6c,
7, and 8, except that for the flame position Y
at Lewis-Semenov number Le = 1 in Fig. 6a. We
have included the details of our treatment be-
cause we believe the differences in methodology
to be of interest. The results in our figures
are more readily compared with solutions fur-
nished by Kurkov and Mirsky [10] and by Adamczyk
and Lavoie [14], who use numerical integration
of the initial/boundary-value problem with a
conventional law-of-mass-action expression for
the chemical-reaction term. The position of the
propagating flame VY appears to reach a position
of closest approach to the wall and then to
retreat; the reversal occurs further from the
wall at larger values of the dimensionless
Arrhenius activation energy R. Because the
larger-activation-energy flame maintains a
greater distance from the wall, the flame
temperature H decreases less rapidly in time.
Raising the reaction order with respect to fuel
ve also leads to closer approach of the flame to
tﬁe wall and, hence, to a more rapid decrease in
flame temperature. Increasing the Lewis-Semenov
number Le likewise leads to more rapid decrease
of the flame temperature owing to greater heat
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transfer to the cold wall. Two other properties
of the results are: (1) the rate of reactant
consumption at the thin flame, -3Y(¥,t)/st,
decreases monotonically in time as the cold wall
is approached; and (2) the speed of the flame in
laboratory coordinates Ug increases significantly
with flame exothermicity K in the bulk gas, but
as the wall is approached and chemical activity
is reduced, the distinction in the flame speed
owing variation in K is much less prominent.

Fourth, from integral-method treatment of
flame propagation toward an adiabatic wall (Figs.
9-11), there is a terminal acceleration of the
flame toward the wall, increasingly pronounced
as the Lewis-Semenov number Le achieves values
in excess of unity; the total amount of fuel is
consumed in finite time. The preheating of
remaining fuel is greater for larger Lewis-
Semenov number, and the flame temperature can
exceed the adiabatic flame temperature for
Le > 1; for Le <1, the flame temperature falls
below the adiabatic flame temperature as the
wall is approached. The wall temperature
approaches the thin-flame temperature as the
flame reaches the wall.

There are two questions concerning accuracy
that arise in connection with the integral-method
treatment of the thin-flame formulation of flame/
wall interaction: first, how well does the
approximate, integral-method solution satisfy the
thin-flame iniitial/boundary-value problem; next,
how well does the approximate, integral-method
solution satisfy the initial/boundary-value
problem with the law of mass action and the
Arrhenius expression for the specific rate
constant. The error is defined here as the ab-
solute value of the residual obtained by substi-
tuting the integral-method solution into the
initial/boundary-value problem, normalized by
the absolute magnitude of the largest term. For
the Landau (flame-stabilized) coordinate o, there
are three terms (temporal variation, convective
transport, diffusive transport) for the thin-
flame formulation; there is a fourth term
(chemical reaction) for the law-of-mass-action
formulation. An error may be defined at any
spatial point in the flow domain 0 < 0 < = at
any time t > 0. (The accuracy of the integral-
method flame/wall-interaction results may be
checked also be means of the Volterra-integral-
equation formulation, presented above both for a
cold, isothermal wall and also for an adiabatic
wall; this procedure for checking accuracy is
not adopted here.)

The error characterizing how well the

" integral-method solution approximates the solu-

tion to the thin-flame formulation seems
acceptably small. For the preponderance of the
flow domain in space and time, the error is 5%
or less. At long times for o = 0.9, the error
increases to about 20%, but this is a very
localized, peak value. For most of the spatial
and temporal domain, the error characterizing
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how well the integral-method solution approximates
the solution to the formulation with the law of
mass action is approximately the same as the
error incurred for the thin-flame formulation;
i.e., the error remains small because the reac-
tion-rate term is small. However, for o = 0.8,
0.9 at large times, the error can become quite
large [i.e., 0(40%)]; this is especially true for
a cold wall, since the quenched flame tends to
be spatially diffuse. Nevertheless, the error
incurred is quite localized.

Worthwhile directions for related further
theoretical and experimental work include iso-
baric, spatially two-dimensional flame/wal’
interaction, and nonisobaric effects on f. e
propagation through premixtures confined by
variable-volume containers. The flame-without-
structure model seems a tractable means of exam-
ining such aerothermachemical flows. The
application of transform techniques for the
solution of such thin-flame models appears to be
an approach deserving consideration.
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